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ABSTRACT

A dedicated, prototype wheat grain image analyser, developed at
the Official Seed Testing Station (OSTS) for England and Wales,
was used to obtain binary images of seed samples taken from five
varieties of two-rowed winter barley. '

Operational ~ difficulties  associated  particularly with  sample
presentation and image acquisition in barley preclude the use of
this prototype for routine use. The curvature of both dorsal and
ventral surfaces of the individual grains meant that each grain
within a sample had point contact only with the sample
presentation bar of the apparatus. Mechanical vibration caused by
the movement of the camera caused individual grains within a
sample to pivot about their longitudinal and lateral axes. This
gave rise to non-uniform positioning of individual grains within a
sample; some grains presented oblique lateral profiles, having
pivoted about their lateral axes; movements about the longitudinal
axis gave profiles in which one end of the grain was elevated
relative to the other.

Despite the difficulties, it was possible to capture barley grain
images which were then used to derive measurements of size and
shape. Software incorporated in the prototype analyser gave
sixty-nine quantitative measurements (descriptors) for each grain
within a sample, based upon specific aspects of grain size and
shape as viewed in lateral section. Sixty-nine descriptors were
obtained for each grain within a sample; the software associated
with the prototype grain image analyser calculated arithmetic
means for each descriptor, taken from data on all the seeds within
a sample for each variety. It was possible to calculate the
corresponding median values for. each descriptor from a particular
variety sample as a separate procedure prior to analysis.

Depending upon whether a given descriptor measured some aspect of
size or shape, the sixty-nine descriptors were divided between two
subgroups. For each subgroup, canonical discriminant analysis was

-applied - with the aim of ' characterising the. five target varieties

on the basis of compound measurements of size or shape.

Variety  characterisation of  multiple grain  samples  was
demonstrated as being possible using measurements of either size
or shape alone. Characterisation was possible using either
arithmetic means or medians; generally, arithmetic means gave
lower incidence of self-classification errors.

Using samples of varieties from one harvest year, it was possible
to generate numerical "rules" (canonical discriminant functions)
which could be used to classify samples of the same varieties
taken from different harvest years; the great majority of samples
were identified correctly by these "rules.”

By calculating the probability of obtaining correct variety
identification using one descriptor alone, it was possible to
assess the relative abilities of isolated measurements of shape or
size to characterise the five varieties. Some descriptors were
obviously better than others in their ability to. "separate” the



five varieties; this may be of significance in future extension of
this technique into DUS work. Measurements of size or shape could
then be ranked, or ordered, on the basis of decreasing probability
of correct identification. These rankings were then used to
identify the minimum numbers of measurements of size or shape from
each descriptor subgroup which were required to achieve variety
characterisations with rates of error comparable to those obtained
when wusing the full complement of measurements within each
subgroup.

The relevance of some of these descriptors to specific features of
barley grains is discussed with a view to future development of
specific descriptors for barley characterisation and/or
classification in possible DUS applications.



OBJECTIVES

The overall aim of this project was to assess the value of an
existing dedicated prototype wheat grain image analyser in the
development of a specific image analysis technique for the
differentiation of barley varieties. ,

Evaluation of the existing dedicated prototype indicated that,
while it was by no means ideally suited for the acquisition of
data in barley, it could, nevertheless, be used to demonstrate the
potential of combined image analysis and statistical analysis
techniques  (pattern recognition) for variety identification in
barley. :

In the first fifteen months of the study, (1989-1990), the use of
one particular  pattern recognition technique, (canonical -
discriminant analysis), showed particular promise in its ability
to separate two closely related varieties, Halcyon and Maris
Otter, on the basis of composite measurements of size and shape.

For the remaining nine months of the study, (1990-1991) three aims
were identified:

(i) demonstration that observed differences in average outline
shape of five barley varieties were sufficient to allow variety
characterisation within a shared discriminant space defined by
canonical discriminant analysis;

(i) demonstration that observed differences between the varieties
were sufficiently stable from year to year to allow subsequent
classification of "unknown" samples based on previously measured
samples;

(iii) the preparation of a paper (or papers) which described the
work and results, demonstrating the potential of image analysis
for barley variety screening. It was hoped that, by generating a
wider awareness of the technique, it may be possible to attract
“further funding needed to support the realisation of a usable
technology.



INTRODUCTION

Preliminary investigation of the application of image analysis
techniques to the problem of identification in barley varieties
indicated that the methodology had considerable potential.
(Purchase, 1990.) .

Despite operational difficulties (associated with sample
presentation and image capture), it was shown that a prototype
wheat grain image analyser could be used to obtain measurements of
size and shape in barley grains. While not an ideal system for the
acquisition of these types of data from barley, parameters
designed specifically for characterising shape in wheat grains
were shown to be adequate for the demonstration of consistent and
measurable differences in the average outline shape of grains from
five barley varieties. The prototype facilitated the
quantification of continuously variable morphological characters
which formed the basis for the development of multivariate variety
characterisations by the application of statistical  analysis
techniques (pattern recognition) to the collected data.

Since present UPOV regulations do not admit the wuse of
multivariate variety characterisations in DUS work, the
"usefulness" of  this application  of  combined  image
analysis/pattern recognition techniques very much depends upon the
ability to apply these characterisations in the subsequent
classification of "unknown" variety samples. In previously
reported work, successful use of numerical "rules” obtained from
variety characterisation by two pattern recognition methods,
(cluster analysis and canonical discriminant analysis), in the
classification of a limited number of "unknown" samples has been
demonstrated.

Characterising the varieties by canonical discriminant analysis
may be thought of as a process in which the descriptor scores or
measurements for each sample of the target varieties are
transformed to give composite scores which locate the particular
sample = within ‘an -n:dimensional space. Ideally, this -process is
such that all samples of the same variety form unique,
well-defined entities within the discriminant space, with each
group of variety samples, or entity, isolated from the other
groups of different variety samples within the same discriminant
space. This is achieved by maximising the distances between
entities and reducing the spread of variety samples about the
average location of each entity within the discriminant space.

As a technique for characterising and subsequently classifying
varieties such as Halcyon and Maris Otter (two varieties so
closely related- that even on the basis of biochemical techniques,
such as polyacrylamide gel electrophoresis, they are
indistinguishable; see table 1) canonical discriminant analysis
indicated particular promise.

In canonical discriminant analysis, the aim is to select
"compounds” (linear functions) of the original descriptor scores
which maximise B (the between-varieties sum-of-squares and
cross-products  matrix) relative to W  (the corresponding



within-varieties sum-of-squares and cross-products matrix). These
"compounds”, (termed canonical eigenvectors or canonical variates)
are transformed axes which are chosen so that the first one of
them lies in the direction of the greatest variability of the
variety means. The second axis is inclined in the direction of the
next greatest variability and is orthogonal to the first, subject
to zero correlation between the two. (The axes are required to be
mutually  uncorrelated to increase the separation between
varieties.) Hence, each axis may be considered as a composite of
the original descriptor scores, with differing "contributions"
from each of them.

The number of such transformed axes that may be extracted is
determined as min(g-1,n): this is owing to a constraint of the
analysis method, which requires that the extracted vectors and
corresponding eigenvalues be non-zero. (In this application, the
maximum number of canonical eigenvectors and associated
eigenvalues that may be extracted is four, since g (the number of
varieties = 5) is generally less than »n, the number of
descriptors.) However, not all. of the possible g-/ axes may be
required to describe the total variation within a particular set
of descriptors, for reasons explained below.

Differences between the varieties within discriminant space prior
to extraction of each successive eigenvector can be examined, by
testing the significance, or otherwise, of differences between
vectors containing the mean values for each descriptor for each
group of variety means. Successive eigenvectors may be extracted
until either all g-/ non-zero eigenvectors have been obtained or a
null hypothesis is accepted. Acceptance of any of the null
hypotheses indicates that the differences between the variety
means in the remaining space may be attributed to chance alone.
Beyond this point, there is no gain in further extraction as it
serves only to add the effects of random variation to the
discriminant process which may "blur" the distinction between the
varieties.

Each of the canonical eigenvectors extracted for each model has an
associated eigenvalue, which may be thought of as representing the
variation in the data for the corresponding eigenvector. Summation
across the g-I eigenvalues for each model gives the total
variability of the system; hence, the percentage of the total
variability accounted for by individual eigenvalues may be
calculated. Thinking of variability as being synonymous with
“information" in this context, examination of these percentages
shows how much information is lost by, for example, the
elimination of one axis from a graphical representation of the
data. Generally, the first two or three canonical variates account
for most of the variability in the system. This is useful from the
point of view of representing the structure of the data within the
transformed discriminant space.

Following on from the success of initial investigation of the
application of this technology to barley, the aim of this study is
to demonstrate how the derivation of a set of "rules" by canonical
discriminant analysis (variety characterisation) enables
identification (classification) of "unknown" samples of barley



grains to be made. Further, the observed differences between the
average outline shape of five barley varieties are sufficiently
stable from year to year to allow the use of characterisations
developed from one years’ samples to be used for classification of
"unknown" samples of the same varieties taken from different
years. »



METHODS
Materials

The five barley varieties wused in this study, with their
recommended uses and PAGE (polyacrylamide gel electrophoresis)
groupings are given in table 1.

Bulk samples of each variety were taken from ten different seed
lots amongst the reference stocks of harvested varieties held by
the Seed Production Department (SPD) at the National Institute of
Agricultural Botany for each..of .the . harvest .years 1988, 1989 and
1990.

Subsamples, containing fifty seeds each, were drawn from the bulk
samples; these were used to form training and test series of data
using seed lot subsamples in the combinations given in table 2.
Each of the fifty seeds included in a subsample was subject to two
selection criteria in that:

(i) any seed with obvious morphological abnormality or defect was
excluded from the subsample

(ii) any seed longer than 1lmm would be too wide for the camera
field of view: this was a constraint imposed by the optical
geometry of the grain image analyser. Consequently, it was
necessary to trim the awns of some seeds before presentation as
part of a sample.

Methods
Image analysis

A description of the dedicated, prototype wheat grain image
analyser and its general operation has been reported previously.
(Keefe and Draper, 1986; Purchase, 1990.)

As - noted elsewhere, ~definition of certain measurements
(descriptors) provided by the image analyser remains confidential,
owing to commercial interests associated with the development of
the prototype; the software associated with the grain image
analyser will, however, produce predictable measurements of any
convex, polygonal shape. Table 3 is a list of those descriptors
which are in the publicc domain; -for convenience, descriptors are
referred to hereafter as vl to v69 inclusive.

For 2 samples of each of the 10 lots available for each variety
collected from 1988 harvested - stocks, (sample series Bss)
measurements of size and shape were made for each grain in four
different orientations; differences between each resulting grain
profile A,B,C and D are given in table 4.

For the remaining sample series given in table 2, measurements

were made using one orientation of the seeds only, this being
profile A.



Numerical methods

For all data collected, both arithmetic means (calculated by the
analyser software) and median values (calculated post hoc in a
separate  exercise prior ~ to pattern  recognition) for each
descriptor were available.

Each of the sixty-nine descriptors was assigned to one of two
subgroups: if the descriptor was a specific measure of size (e.g.,
area, height, length), it was allocated to the subset (SIZE};
. conversely, .if the..measurement . was size-invariant, (e.g., ‘-aspect
ratio, shape factor, Q) it was assigned to the subgroup {SHAPE}.
Hence, two subgroups of descriptors were established; {SIZE},
comprising 34 measurements (vl to v31 and v67 to v69, inclusive)
and {SHAPE}, containing 35 measurements (v32 to v66, inclusive).

Given that the subgroups {SIZE} and {SHAPE} contain 34 and 35
variables  respectively, it is clearly impossible to give a
graphical presentation of the original data which includes all the
variation simultaneously. Effectively, the variation in the data
can be examined by using canonical (transformed) axes to reduce
the system from 34-or 35- dimensions down to 3- dimensions, which
can be represented graphically in a 2- dimensional medium.

Using the data from each subgroup in turn, canonical variates were
calculated using the MGLH (multivariate general linear hypothesis)
module of the statistical analysis package SYSTAT (Wilkinson,
1988) on a Hewlett Packard Vectra ES (IBM-AT compatible) PC under
Microsoft DOS 3.2. Input data for each model were the arithmetic
means or medians for each descriptor, calculated over the f1fty
seeds in each sample from the ten lots for each variety.

The adequacy of variety characterisation was assessed by the
number of errors in self-classification amongst the samples within
a training set when the original data were transformed from
feature to discriminant space in canonical analysis. Samples taken .
from 1989 and 1990 harvests (samples series X89,Y89,X9 and Yoo;
see table 2) were intended primarily as test series to demonstrate
the "competence" of classifiers based on the characterisation of
the varieties in the training series. In the course of the
investigation, data from different years were used to produce
mixed training series, as indicated in table 2, to determine
whether or not variety characterisations was possible using
variety samples from different harvest years.

Samples used as test series for any of the classifiers were
"unknown" in the sense that they were not included in the sample
series used to  establish  characterisation and  subsequent
classifiers. Test series were used to assess the performance of
each classifier in terms of the number of incorrectly identified
(i.e., misclassified) samples as a percentage of the total number
of samples in the test series.



RESULTS

Variety characterisation

Comparisons of characterisations obtained using all descriptors
from each subgroup {SIZE} and {SHAPE} amongst profiles A,B,C and
D.

Whether using arithmetic means or medians as input variables for
canonical discriminant analysis, it was possible to characterise
all five varieties in samples series Bss on the basis of
.measurements of size or .shape .in . all. four orientations of the
seeds, A,B,C and D.

Generally, in terms of the %error figures for each of the four
profiles AB,C and D, the differences between characterisations
based on either [SIZE} or {SHAPE} were slight, as were the
differences between characterisations based on medians and
arithmetic means. ( Table 5.)

The values for three multivariate statistics, A,v, and € are given
in table 6 as a quantitative description of the differences
between the four profiles in terms of the spatial arrangement of
the varieties in feature (i.e., defined by the untransformed
descriptor scores) space. The multivariate F-approximation to
Wilks’ A describes the. variation of the descriptor scores
within-varieties as a proportion of the total variation present in
the feature space; as A decreases, so the value of the
multivariate F-approximation increases. The multivariate
F-approximation to the Pillai trace, v, represents a similar
measure of the variation between variety groups. © represents the
ratio of the between-varieties variation relative to the wvariation
within samples of the same variety; hence, its value increases as
the variation within-varieties decreases relative to that of the
variation between-varieties (Wilkinson, 1988; Kendall, 1975).

In both {SIZE} and {SHAPE} descriptor subgroups, both profiles A
-and ‘B have greater values for A,v and O, indicative of superior
separation of the variety groups. (Table 6.) This was true whether
dealing with data based on arithmetic means or medians. Hence,
from table 6, it is apparent that groups of variety samples are
best defined as separate entities on the basis of either size or
shape using data from either profile A or B.

Canonical discriminant analysis is generally regarded as ‘"robust",
meaning that its operation is not adversely affected by failure of
any input variable to meet the assumptions underlying the
technique. While use of input variables which do not meet the
assumption of normality and homogeneity of variance within the
variety samples need not necessarily compromise characterisation
of the varieties, the full predictive power of the technique, in
terms of assignment of variety samples on a probabilistic basis,
may be affected. Thus far, all descriptors within each of the two
subgroups {SIZE} and {SHAPE)} have been used for characterisation
on the basis of both arithmetic means and medians.

Tables 7 and 8 list those descriptors from both subgroups {SIZE}
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and {SHAPE] within each of the four profiles which fulfilled the
dual criteria of (i) univariate normality of the descriptor data
within each variety and (i), for a given descriptor, homogeneity
of variances across all five varieties when both arithmetic means
(table 7) and medians (table 8) were used. Univariate normality
was tested within each variety by a Kolmogorov-Smimov one-sample
test with Lilliefors probabilities; homogeneity of variance - was
tested across all five varieties for a given descriptor using
Bartlett’s test. (Sokal and Rohlf, 1981.) For both tests,
rejection of the null hypothesis at p < 0.001 was taken to
indicate non-compliance with the assumption being tested. While
most of . the descriptors . from .each . .subgroup - "passed” ‘both -tests ‘in
profiles A and B, the numbers of descriptors remaining in the
subgroups for profiles C and D were reduced considerably; e.g.,
for profiles A and B, using arithmetic means the number of {SIZE}
descriptors failing to meet criteria () and (i) was 7 and 4
respectively; for (SHAPE} descriptors, it was 9 and 3
respectively. Corresponding figures for profiles C and D were 14
and 25 respectively for {SIZE} and 24 and 23 for {SHAPE}.

Repetition of the characterisation of the target varieties within
discriminant space using only those descriptors within each
subgroup {SIZE} and {SHAPE} which met criteria (i) and (ii) above
gave the results shown in table 9. Comparing these error
percentages with those given in table 5, for arithmetic means,
data from profiles A and B still gives flawless characterisation
on the basis of either size or shape, while data from profiles C
and D show some deterioration of performance. Using medians, the
restriction on "available" descriptors has an obvious effect in
all four profiles, AB,C and D using {SHAPE} descriptors and
profiles A,C and D using {SIZE} descriptors.

Table 10 shows the new values obtained for A,v and 0 for the
restricted descriptor subgroups, indicating the relative
"distinctness" of the five target varieties within feature space,
as explained above. The obvious effects of reducing the number of
descriptors within each subgroup are demonstrated by the relative
-changes in values for the multivariate statistics. Comparing table
2 with table 10, these changes are particularly marked in the data
for profiles C and D, where restriction (on the basis of
non-normality and  heterogeneity of variances) reduced the
availability of descriptors for inclusion within each subgroup
{SIZE} and {SHAPE) for both medians and arithmetic means. These
differences can be seen in figures 1 and 2, in which the first
three canonical axes for each profile using (SIZE} (figure 1) and
{SHAPE} (figure 2) descriptors meeting the dual criteria have been
plotted. The figures show the disjointed distribution of the
samples in discriminant space, representing groups of variety
samples. The distribution of the varieties is, however, more
distinct in the plotted data from profiles A and B.

Investigation of the minimum number of descriptors required to
obtain variety characterisation.

Univariate F-tests performed on data from profile A gave a means

of assessing the discriminatory "power” of each descriptor.
Considered in isolation within each subset, {SIZE) and {(SHAPE),
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the descriptors may be ranked by decreasing order of their
univariate F-ratios, taken to indicate the “power" of each
descriptor to differentiate  between the varieties. Using the
method described in Lubischew (1962) and Sneath and Sokal (1973),
estimates of the probability of correct variety identification
using single descriptors may be determined; these are given in
tables 11 and 12. As univariate F-ratios (indicating the ratio of
the data spread between-varieties relative to that
within-varieties) decreases, SO the value of  p(correct
identification using a given isolated descriptor) decreases.

These .rankings were then _used to . 'remodel" the canonical
transformations to  determine which serial combination of
descriptors had the greatest effect in terms of characterising the
target varieties within the discriminant space defined by the
transformed canonical axes. The "effect" of any combination of"
descriptors from the two subgroups {SIZE} and {SHAPE)} on the
configuration of the variety samples within discriminant space may
be monitored, indirectly, by the changes in values for the three
multivariate statistics A, v and © mentioned above. The aim of
this "trial and error" process is to minimise the variation within
groups of samples of the same variety within feature space (seen
as a reduction in the value of A) whilst maximising the variation
between those groups (visible as an increase the value of v). 6
can be wused to indicate the simultaneous effect on both
within-variety and between-varieties variation.

The descriptors from each subgroup {SIZE} and {SHAPE} used in each
model for canonical discriminant analysis are given in tables 13
and 14 for arithmetic means and tables 15 and 16 for medians.
Groups of descriptors from each subgroup were added to canonical
discriminant analysis in order of descending values of the
univariate F-ratio and p(correct identification).

Tables 17 and 18 give the values of the three multivariate
statistics (A, v and 0) associated with each combination of
descriptors. The changing values of these statistics describe the .
- changes ~in location of groups of variety samples within feature
space. The values show increasing group separation and decreasing
spread within groups of samples from the same variety as more
descriptors from each subgroup {(SIZE} and {SHAPE) are submitted as
input variables for canonical discriminant analysis.

The position of each group of variety samples relative to others
in the same discriminant space defined by four canonical axes may
be established. Using the average location, or centroid of each
group of variety samples as a reference point, Mahalanobis
distances, (representing the Euclidean distances between centroid
pairs) can be calculated. (Sneath and Sokal, 1973.) This allows
assessment of the effects of various combinations of input
variables on the final configuration of variety groups following
canonical discriminant analysis. These relative distances are
summarised graphically in figures 3, 4, 5 and 6. Here, each graph
plotted shows the changes in relative distances between one named
variety and the other four target varieties sharing the
discriminant space. Figures 3 and 4 refer to arithmetic mean and
median data for combinations of descriptors from the subgroups
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{SIZE}; figures 5 and 6 contain similar plots for combinations of -
descriptors from the subgroup {SHAPE}.

In all four figures, a general pattern in the plotted data is
apparent; initially, as the model number (and hence, the number of
descriptors combined in canonical discriminant analysis; see
tables 13 to 16) increases, there is an initial rise in the
relative distances between pairs of centroids within discriminant
space. Thereafter, as more descriptors are added as input
variables, further divergence between centroid pairs is not so
marked; it appears that successive additions of more input
variables has less effect upon the resulting configuration of the
variety samples in discriminant space following analysis. This
suggests that the descriptors which convey the most "useful”
information about each variety may be contained within perhaps the
first three or four models. Certain descriptors convey the most
important information from the point of view of locating groups of
. variety samples within discriminant space; subsequent addition of
data from other descriptors serves only to “fine-tune" group
location, producing no visible re-location of variety groups
relative to each other within the co-ordinate system of the
canonical axes.

Figure 6, showing plots of distances between centroid pairs based
on arithmetic mean data from the subgroup {SHAPE]}, presents a
slightly  different pattern. The final combination of input
variables appears to have had a marked effect on the divergence of
group centroids, breaking the trend established by previous
combinations and possibly implying the existence of synergism
within this final combination of descriptors.

The data plotted in these figures demonstrates the close proximity
of the three varieties Halcyon, Pipkin and Maris Otter. There is
very little divergence between the centroids of these three
varieties; this is particularly true of Halcyon and Maris Otter.
In terms of the relative distances between centroid pairs, the
closer together two varieties are, the more chance there is that
there will be overlap in the -data points forming a variety group
around each centroid. Overlap may lead to "blurring” of the
boundary between two such varieties and the canonical discriminant
analysis may thus fail to distinguish all samples of two such
varieties correctly.

Tables 19 and 20 -show how the "performance” of canonical
discriminant analysis improves, in terms of correct allocation of
each sample to the appropriate group of varieties. The allocation
"rule" involves comparison of the Mahalanobis’ distances between
the co-ordinates of each of the five variety centroids within
discriminant space and the co-ordinates of a point representing
the " location of the variety sample. The sample point is allocated
to the closest group of variety points in discriminant space. As
more sample points are allocated to each group, locations of the
group centroids are adjusted. The figures given in tables 19 and
20 show the total number of samples incorrectly allocated as a
percentage of the total number of samples. Whether based on
arithmetic means or medians, as more descriptors from each
subgroup are added as input variables for canonical discriminant
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analysis, %error declines.

For descriptors based on (SIZE}, as the number of input variables
based on arithmetic means increases from 1 to 9 (table 13) the
number of samples incorrectly assigned drops from 63 to 4 out of a
total of 150 (table 21): thereafter, all érrors are attributed to
incorrect assignations of variety Halcyon (table 21). Using
medians, comparable results are seen: %error drops from 75 to S
out of 150 (table 22) as the number of input variables increases
from 1 to 10, subsequent errors involving two varieties only,
Halcyon and Maris Otter (table 22).

Using combinations of descriptors from the {SHAPE) subgroup, as
the number of input variables increases from 1 to 14 (for
arithmetic means; table 14) and 1 to 9 (for medians; table 16),
the number of samples incorrectly assigned falls from 61 to 6 for
arithmetic means and 61 to 4 for medians (tables 23 and 24
respectively). Again, subsequent errors involve Halcyon and Maris
Otter only.

Sample classification

Use of wvariety characterisations based on all descriptors within
each subgroup {SIZE} and {SHAPE}.

Quantitative assessment of the "usefulness" of both size and shape
characterisations of the five varieties as the bases for
classification of further independent "pure” but "unknown" samples
was possible. (Here, "pure" is used to indicate that samples
comprise grains of one variety alone; "unknown" is in the sense
that such samples were not used in the development of each
classifier.)

Canonical discriminant models developed from the 1988 sample
series Css for each descriptor subgroup were used to obtain the
canonical scores of further independent samples taken from 1989
and 1990 harvested stocks. On the basis of these scores and a
-distance criterion - (Mahalanobis> D), a given grain sample was
assigned to the variety to which it was closest in the
discriminant space defined by the canonical axes for each
descriptor subgroup. (Sneath and Sokal, 1973; Dunn and Everitt,
1982.) Significantly, variety characterisations based on either
shape or size data from the 1988 samples alone define classifiers
which show generally adequate classification performance on
samples taken from subsequent season’s harvested stocks, 1989 and
1990.

In terms of total misclassification error, (the total number of
variety samples incorrectly classified as a percentage of the
total number of samples within a test series) the 1988 classifier
developed from samples series Css, using all 34 arithmetic
mean-based {SIZE} descriptors 1.3% and 5.3% incorrect assignations
in the 1989 and 1990 sample series Xss and Xoo respectively. For
all 35 (SHAPE} descriptors, the corresponding misclassification
errors in Xs9 and X9 were 4.0% and 5.3%. (Table 25.)

For median-based classifiers, misclassification error in Xss and
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Xoo was 4.0 and 8.0% respectively using all {SIZE} descriptors;
using all available {SHAPE} descriptors, misclassification erross
were 120 and 93% for 1989 and 1990 test sample series
respectively. (Table 26.)

Characterisation of the varieties on the basis of size was largely
unaffected by adding five samples of each variety from the 1989
sample -series to those in the 1988 sample series to form training
set Css+89; the same was true when five samples from the 1990
series were added to the 1988 series. In both cases, variety
characterisation remained largely error-free, even though the data
upon which it was based came from two . different harvest years.
(Tables 27, 28.)

Assessed by the "performance” of numerical classifiers, the use of

- combined data from two years as sample series for the development

of classifiers for subsequent use on "unknown" samples had a
variable effect.

Classifiers for {SIZE} and (SHAPE) descriptor subgroups based on
arithmetic means and sample series Css+s9 did not improve
classification of the remaining 1989 samples in series Yso. This
contrasted with the apparent improvement in performance of
classifiers based on a mixture of data from 1988 and 1990 (sample
series Css+90) on the remaining samples in sample series Yoo;
here, for both ({SIZE} and (SHAPE} descriptor subsets, the
classifiers developed from two years’ data reduced
9omisclassification error from 5.3 to 2.0%. However, using all
available data for 1988 and 1989 to form one large sample series
(Css+Xs9) did not improve the ability of resulting classifiers for
either {SIZE} or {SHAPE} to identify 1990 samples in series Xoo.
(Table 25.)

Conversely, where classifiers were based on medians, there was an
apparent "benefit" in terms of improved classifier performance: in
sample series Ysy and Y9, %misclassification error was
approximately half that seen in sample series Xs9 and Xso for both

- subgroups of descriptors. Combining two years’ samples (1988 and

1989) gave rise to classifiers which reduced the
%misclassification error in the 1990 sample series Xoo. (Table
26.) .

Use of variety characterisations based on different combinations
of descriptors from each subgroup {SIZE} and {SHAPE} in subsequent
classification of unknown variety samples.

Tables 29 and 30 show how each of the classifiers developed for
different serial combinations of arithmetic mean and median data
from both subgroups {SIZE} and {SHAPE} "performs” when used to
classify 15 unknown samples of each of the target varieties taken,
this time, from 1989 and 1990 harvested stocks.

For both years’ samples, the %error figures given in these tables
show generally similar patterns to those given in tables 19 and
20. Whether using arithmetic mean data or medians, as the number
of 1988 based descriptors used as input variables for canonical
discriminant analysis increases, so the %error drops in the 1989
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and 1990 samples. The tabulated data shows that the %error for
both 1989 and 1990 samples was generally higher than that for 1988
samples; %error for 1990 samples was generally higher than that
for 1989 samples. Both arithmetic mean and median based 1988
samples showed sudden marked reduction in %error as the number of
descriptors from each subgroup used as input variables increased
beyond 3 or 4 (see tables 19 and 20); similar marked decrease was
not evident in %error from either 1989 or 1990 samples. (Tables 29
and 30.)

Using arithmetic mean data from descriptors in either subgroup
{SIZE} or {SHAPE}, the main sources of classification error
amongst both 1989 and 1990 samples were the three varieties
Halcyon, Maris Otter and Pipkin. (Tables 31 and 32.)

Using medians, amongst 1990 samples, most error was associated
with Halcyon and Maris Otter. For 1989 samples, again, the three
varieties Halcyon, Pipkin and Maris Otter had the highest error
associated with them, whether dealing with combinations of {SIZE)}
or {SHAPE} based descriptors. (Tables 33 and 34.)
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DISCUSSION

The results presented above have demonstrated that a combination
of image analysis and pattern recognition techniques holds
considerable potential for the classification of barley varieties.

Even within the limited range of varieties chosen, consistent and
measurable differences in specific aspects of grain morphology
have been shown, regardless of the fact that these measurements
had been designed specifically for the characterisation of shape
in wheat grains.

Variety characterisations could be made wusing either arithmetic
means or medians. Generally, the results indicated that higher
%error was obtained when using medians, but in terms of both
self-classification error in characterisation and
misclassification error in identification of unknown variety
samples, these differences were very slight. Where differences did
exist, they corresponded to one or two misclassified samples,
rather than differences amounting to orders of magnitude. Hence,
for the purposes of further discussion of the results, unless
specific references to results based on medians are made, comments
apply to both arithmetic mean and median-based data.

Differences between the varieties were sufficiently consistent to
allow characterisation on the basis of either size or shape,
irrespective of orientation group. Using all descriptors in each
subgroup (SIZE} and (SHAPE}, it was possible to obtain
characterisations which were either totally error-free or which
had low self-classification errors of the order of 1-4% amongst a
total of 100 samples.

Restriction of canonical discriminant analysis to only those
descriptors which met the criteria of normality and homogeneity of
variance provided further evidence of the '"unsuitability” of data
from profile groups C and D. The practical difficuities associated
with the gathering of data from these two orientations of the

- seeds - have already been ‘described (Purchase, 1990). Numerically,

those descriptors in each subgroup which comply with the basic
assumptions of the method of analysis may be inadequate for the
purposes of giving a clearly disjointed distribution of the groups
of variety samples within discriminant space.

Profiles A and B proved the most "useful" of the four seed
orientations since most descriptors within each subgroup complied
with assumptions of both normality and homogeneity of variance.
Flawless variety characterisation was obtained in both profiles A
and B using arithmetic mean data for each descriptor subgroup.
Characterisations based on medians had higher incidence of self-
classification errors; using descriptors based on size,
characterisation was error-free in profile B only. Hence, when
considering possible future applications of these results, if the
full probabilistic potential of this method of numerical analysis
is required, it may be preferable to use arithmetic means rather
than medians. This may be particularly relevant in any "end-use”
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which involves economic decision-making on the basis of such
classifications.

Evaluating the potential of this technique in its application to
characterisation of barley varieties, data from profile A provides
the most "accessible" information in the sense that the definition
of each descriptor may be related to approximately analogous
features on individual barley grains. Combining two different
views of the grains, i.e., data from profiles A and B, in the same
canonical  discriminant analysis may be worthy of future
investigation, since it is likely that the analysis method will

.. place different.. weights .on .measurements from-each -profile group.

It was possible to achieve near optimum variety characterisations
using reduced numbers of input variables from either descriptor
subgroup, {SIZE} or {SHAPE}. Using only one variable from each
subgroup, a generally disjointed distribution of groups of variety
samples could be achieved in which most of the self-
classification errors could be attributed to incorrect assignments
of the three smaller varieties, Halcyon, Pipkin and Maris Otter.
Using  arithmetic means, the descriptors with the highest
individual probabilities of correct sample identification were v30
and v60 from subgroups ({SIZE} and {SHAPE}; for medians, the
corresponding descriptors were v14 (perimeter) and v60. In very
general terms, v30 is related to the point of inflexion of the
dorsal hull of the grain just beyond the lemma base and above the
point of insertion of the lodicules on the ventral surface. V60 is
a related but size-invariant descriptor which provides an
assessment of the feature relative to grain length. Using
arithmetic means, error-free characterisation of Igri was possible
on the basis of either v30 or v60 taken singly.

Submission of an additional descriptors to canonical discriminant
analysis from each subgroup brought about considerable reduction
in the self-classification error percentages. Measurements of
size, such as length (v2), perimeter (v14) and v30 were adequate
to give flawless characterisation of varieties Igri and Panda
using arithmetic means; using medians, one more descriptor, v6
(germ length) was required to achieve the same result. Perfect
charactersation of these two varieties on the basis of shape
required more "information"; using arithmetic means, v37 (relative
germ length) was needed in addition to the combination
v44,v53,v56,v57 and v60 which was adequate for separation of these
two varieties on the basis of medians. (V44,v53,v56 and v57 are
all descriptors which measure aspects of shape of the "embryo-end"
of the grain as viewed by the camera.) Still more information was
required to characterise the remaining three varieties Halcyon,
Pipkin and Maris Otter. The "closeness”" of these three varieties
in the genetic sense is evident at the biochemical level by their
PAGE groupings (see table 1) which reflects the degree of
"relatedness” between them: Halcyon and Pipkin share a common
parent in Maris Otter. Morphologically, differences between these
three varieties are very slight; existing taxonomic methods for
their identification, (relying on such features as rachilla hair
length, strength of rachilla hairs, lodicule size, degree of nerve
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pigmentation and aleurone colour) are based on relative
" "

differences between the varieties and require an experienced “eye
in order to use them effectively.

Since Wilks’ A ranges from 0 to 1, the incidence of a null value
for this statistic may be taken an indication of optimal
dispersion of the variety samples within discriminant space. On
this basis, minimum subsets of descriptors from each subgroup
{SIZE} and {SHAPE} can be identified for which associated self-
classification errors involve, at most, a few samples of
particular varieties, as follows:

arithmetic means:

{SIZE}

v1l,v2,v6,v7,v13,v14,v27,v30,v31,v68,v69

(Self-classification errors associated with 2 samples of Halcyon
only.)

{SHAPE}
v32,v33,v35,v36,v37,v38,v39,v42 v44 v44 v45 v46,v48,v51,v52,v53,
v56,v57,v60,v65,v66

(Self-classification errors associated with 2 samples of Halcyon
and 1 sample of Maris Otter).

medians:

{SIZE})

v1,v2,v6,v7,v8,v13,v14,v27,v30,v31,v68,v69

(Self-classification errors associated with 2 samples each of
varieties Halcyon and Maris Otter.)

{SHAPE)
v32,v33,v34,v35,v36,v37,v38,v39,v42,v44 ,v45 v46,v47 ,v48,v49,v50,
v51,v52,v53,v54,v55,v56,v57,v58,v59,v60,v61,v62,v63,v64,v65,v66
(Self-classification errors associated with 3 samples of Halcyon
and 1 sample of Maris Otter.)

When used for wheat, the descriptors of size and shape may be used
~to reconstruct the image of a particular grain; though certain
specific features may be meaningless in terms of the morphology of
barley grains, the descriptors do provide predictable measurements
of convex polygons which approximate the size and shape of each
grain within the variety samples. It is therefore possible to
determine in which part of the barley grain the most important
differences occur.

Certain "basic" overall measurements of gross morphology appear to
be important. Within the {SIZE} and {SHAPE} descriptor subsets
given above, measurements of area (vl), length (v2), and perimeter
(vl4) are "matched" by indications of overall circularity (shape
factor, v32) and rectangularity (aspect ratio, v33). All five
descriptors have relatively high values for p(correct
identification), (see tables 11 and 12), implying that there are
important  differences between the five varieties in terms of
overall size and shape alone.More specific descriptors, such as
v30 and v60 have been discussed above, indicating the relative
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"importance” of the shape of the "embryo-end" of the grain, as do
descriptors such as v6 (germ length), v7 (germ angle), v8 and
other measurements of shape in this region, such as v39 and v44.

Similarly, descriptors v27, v56 and v57 indicate the importance of
size and shape in the grain’s ventral hull just beyond the lemma
base. Curvature of the ventral hull is largely the determinant of
values of descriptors such as v13 (high point), v51, v52, v68 and
v69.

Considering the possible future development of a range of barley
specific measurements for use in conjunction with the existing
analyser, the areas of the grain profile mentioned above seem to
be worthy of further investigation, from the point of view of
either adjusting the software definitions to "follow" the barley
profile more specifically, or in the development of new
descriptors.

Significantly, variety characterisations based on either full
descriptor subgroups or reduced subsets drawn from these subgroups
define classifiers which are generally adequate for the
classification of samples taken from subsequent seasons’ harvests.
This suggests that the differences between varieties are
relatively stable from year to year, sufficiently so that they
might permit classifications to be made from a reference database
comprising accumulated data from, say, previous years’ variety
samples. Generally, the results appear to suggest that the greater
the "time-difference” between samples used in characterisation and
those which are to be classified by "rules" developed from that
characterisation, the poorer the subsequent classifier
performance. Improvement in classifier performance achieved by
"mixing" data from two years within characterisation may represent
wider sampling of the total variation in the system represented by
measurements from two years’ variety samples.

There was some evidence to suggest that "updating” a training set
to include samples from two different years had potential for
improving classifier performance in terms of reduction on the
incidence of misclassification error. However, investigation of
the possible differences in the dispersion of the variety means
between two years gave results which implied that variation was
statistically  significant. Multivariate tests of the significance
of dispersion of the vectors containing means for each variety
between pairs of years (1988 and 1989, 1988 and 1990 and 1989 and
1990) gave results which were very highly significant (p <0.001 in
each comparison) within each descriptor subgroup (SIZE} and
{SHAPE}. Interpretation of the practical implications of these
results is difficult in view of the relative paucity of data from
1989 and 1990 compared with that available for 1988, though the
test§ used equal numbers of samples from each year. It is possible
that they reflect differences in location and the interaction of
climate with crop growth during the growing season.

Given the specificity of many of the descriptors, the results
discussed above serve best as examples of the possible use of
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multivariate variety characterisation and subsequent
classification. The scope of this study was limited to the use of
binary images only; this may not represent the optimum method of
variety  identification as it ignores those surface features
currently used in existing taxonomic methods. Such features may
serve to simplify the accuracy and speed of identification by
acting both as "sieves" to divide the varieties into groups or as
highly specific descriptors for the characterisation of one
particular variety alone. This study has indicated particular
regions of the grain (basal dorsal and ventral hulls) which may be
worthy of further immediate research with a view to producing
-barley-specific ...descriptors . for . use .with' the existing - -prototype
wheat grain image analyser. The results have shown that it is
possible, for example, to obtain error-free characterisation of
Igri on the basis of single descriptors, such as v30 or v60, which
refer to specific features found in the outline shape of wheat
grains. "Tailored" descriptors may demonstrate that it is possible
to obtain similar, error-free characterisations for other
varieties, thus opening wup potential applications of this
technique in the area of variety characterisation for DUS
purposes.
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CONCLUSIONS

The unsuitability of the apparatus is due to the curvature of both
dorsal and ventral hulls of individual barley grains. Essentially,
lacking a flattened surface, barley grains pivot about their point
of contact with the sample presentation bar; the outcome of this
is described as (i) lack of uniform "attitude” within a sample of
grains and (ii) the occurrence of oblique, rather than lateral,
grain profiles. Both (i) and (ii) introduce additional variation
in the system; non-uniform attitude imposes bias on the arithmetic
mean scores calculated for each descriptor; oblique profiles
produce spurious measurements of both size and shape.

Though such operational difficulties preclude the routine use of
the prototype analyser for obtaining data on shape and size in
barley, measurements that were obtained indicated that variety
characterisation and subsequent classification was  achievable
using two particular pattern recognition techniques.

Clustering could be used as a numerical "sieve" to divide the
varieties into groups which could then either be subjected to
canonical  discriminant analysis or further clustering. For
varieties such as JIgri and Panda, where there are obvious
differences in size and shape, clustering could be used to
characterise each variety as a unique group of samples within
feature space. Clustering alone was not an adequate method of
characterising the three very similar varieties Halcyon, Pipkin
and Maris Otter; in order to distinguish between these, canonical
discriminant analysis was required.

Of the two pattern recognition techniques, canonical discriminant
analysis appeared to be the most "useful”; it could be applied
with equal success to all five varieties to give flawless variety
characterisation on the basis if either size or shape. Even
restricting the descriptors used to characterise the varieties to
those which fulfilled the assumptions underlying the numerical
analysis method, it was possible to obtain error-free variety
-characterisations. The numerical "rules” obtained from
characterisation could be used to classify unknown variety samples
taken from  subsequent years with low  incidence = of
misclassification error.

This project has been restricted to the use of sample means and
medians to characterise varieties; the question of identifying
varieties from single grains, though not examined, may be of
significance in possible future applications of these techniques,
since it seems that the most likely "end-use” of this technology
would be in the detection of individual seed contaminants. The
main problems readily identifiable in the extension of this work,
in which characterisation is based on variety samples, to that of
characterisations based on individual seeds may be stated as
follows:

(i) testing the data for conformity to the assumptions behind
canonical discriminate analysis.

While "large" numbers of grains from each variety may meet both
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criteria of normality and homogeneity of variance, there may be
problems with “small” numbers which may not be solved by simple
data transformation. If the end-use is to be in the area of
contaminant detection, then these two criteria must be met in
order to realise the full, probabilistic power of canonical
discriminant analysis. If they cannot be met, then it will be
necessary to turn to other clustering algorithms in order to
achieve characterisation.

(ii) dealing with the increase in variance introduced when using
individual grain data within the models.

"Blurring” of the boundaries between groups of individual grains
representing each variety may occur,such that, even if the
underlying criteria for canonical discriminant analysis are met,
the dividing '"lines" between varieties may become dividing
"zones". This may mean that individual grains lying within the
boundary zones would have approximately equal probabilities of
membership of two or more groups on the basis of Mahalanobis
distances and thus could not be classified with any degree of
certainty. Given an extremely large sample of individual grains,
it may be possible to use other numerical methods to define
confidence "shells" about the average location of each variety
within discriminant space and to use the boundaries of different
"shells" to meet the level of accuracy required in any
classification procedure.

The problems of single-grain identification are at their most
complex in situations in which classifiers are required for use in
the sense of a traditional botanical key, by contrast, in quality
control it may be sufficient to identify a certain number of
individual grains in a sample as "not x" without needing to
identify them further.

Careful development of models which are reliable classifiers for
given varieties is fundamental to both types of application of
this technology. This necessitates considerable sampling effort in
the first instance to ensure that as complete a range as possible
of the variance within a variety is included. In possible
extensions of this work to the problems of single grain
identification,  descriptors are needed which are relatively
constant within-varieties compared to differences
between-varieties; ideally, descriptors which are diagnostic of
particular varieties should be sought.

In the search for diagnostic features which can be exploited in
this technology, two significant areas for future research can be
identified: one is based upon continued use of outline shape
descriptors and the other upon the use of surface features used in
existing taxonomic methods.

Development of  barley-specific descriptors, based upon results
presented above which suggested that differences in the size and
shape of the grain’s ventral and dorsal basal hulls may be
important, may prove beneficial in the provision of descriptors
which will at least be able to characterise variety samples on the
basis of a single feature; this has immediate potential in the
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possible use of this technology in DUS applications.

Restricted to binary images only, the possible implementation of
grey-level processing to bring surface features of the grain
"on-line" in an identification scheme is, at this stage,
speculative. Technology currently available on the market would
permit rapid implementation of initial studies in this particular
area; switching to grey-level processing may have greater
potential for eventual commercial development and exploitation in
that it is likely to lead to the establishment of variety
characterisations based upon single, highly specific characters.
These may. .yield classifications ..which use 'presence/absence” of
particular features (e.g., blue aleurone present in Halcyon, but
not in either Pipkin or Maris Otter; nerve pigment in Maris Otter
characteristically in three "neat" lines.)

In summary, therefore, despite the general unsuitability of the
prototype for data acquisition in barley, the results obtained in
the course of this study have demonstrated the obvious potential
of image analysis methods for the characterisation and
classification of barley varieties. Although the results obtained
are generally encouraging,in that they demonstrate the clear
potential of this technique, areas requiring significant future
research effort have been indicated as a pre-requisite for further
development; it seems very likely that there will be a
considerable amount of further work which must be done in order to
produce a system which would be both usable in industry and viable
commercially.
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1 2 3 4
variety: code: abbreviation: uses: PAGE group:

Halcyon hecn h S/IOB 10.10
Igri . igr i G/wE 2.7
Pipkin kin k S/IOB 10.13
Maris Otter mot m S/IO0OB 10.10
Panda pda P G/wf 10.3
notes:

'codes used in text to identify varieties.
’abbreviated codes used as labels in discriminant analysis.

‘uses: S variety fully recommended, special use
G variety fully recommended, general use
wf winter feed variety
IOB accepted by the Institute of Brewers as a malting variety.

‘varieties on the UK National List,January 1989, classified according
to hordein electropherograms obtained by the use of the standard
International Seed Testing Association (ISTA) PAGE (polyacrylamide
gel electrophoresis) method.

table 1 :The five target varieties used in the study, indicating
recommended uses and PAGE groups. '
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Identifier no samples taken per seed

used lot 1-10 for each variety:
in text: n? N' Year 1 2 3 4 5 6 7 8 9 10
Bee 20 100 1988 2 2 2 2 2 2 2 2 2 2
C88 30 150 1988 3 33 33 3 3 3 3 3
x89 15 75 1989 1 21 2 1 2 1 2 1 2
Y89 10 50 1989 -1 -1 - 2 1 2 1 2
X90 15 . 75 1990 1 2 1 2 1 2 1 2 1 2
Ygo 10 50 1990 -1 - 1 - 2 1 2 1 2
combined samples: '
35 175 1988 3 33 3 3 3 3 3 3 3
88+89
1989 11 1 1 1 - - = = -
C 35 175 1988 3 3 3 33 3 3 3 3 3
88+90
1990 11 1 1 1 - - - - -
cC + X 45 225 1988 3 3 3 3 3
88 89
1989 1 2 1 2 1 1 2 1 2

1 . .
N denotes total number of cases in sample series.

n denotes number of cases per variety within that series.
combined samples denotes series drawn from two years’ samples
table 2 :Details of the seed-lot composition of 1988, 1989 and

1990 training and test sets for the five target

varieties Halcyon, Igri,Pipkin, Maris Otter and Panda,
showing abbreviations used throughout the text.
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identifier description notes’

vl area

v2 length grain length (mm)

v3 height grain height (mm)

v4 brush height height of brush above stage

v5 germ height height of the bottom of the
scutellum above the stage

v6 germ length scutellum length

v7 germ angle tangent of an angle subtended
to the horizontal by a line
drawn through the germ region
of the grain .

v10 foot length length .of contacting surface
between grain and stage

v1l3 high point horizontal distance from the
front of the grain to the
highest point on the grain

v14 perimeter

vl5 dorsal tangent tangent of an angle subtended
to the horizontal by a line
drawn along the dorsal area
of the grain

v32 shape factor (amaM*M/Qmﬂmﬂeﬂz

v33 aspect ratio o {height/length)

v34 Q " {area/ (height*length))

v35 relative brush ht va/v3

v36 relative germ ht v5/v3

v37 relative germ len v6/v2

v38 horizontal axis v36/v35

references are to structures specific to wheat.

table 3

28

:Description of public domain measurements referred
in text ( Keefe and Draper, 1986 ).
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ventral

lemma base awn base PROFILE

furrow / rachilla /palea base CODE

down left right A

down right left B

up .left right C

up right left D
"down", "up", "left", "right" refer to relative positions

of specified features as viewed on camera monitor screen.

table 4 :Explanation of difference between profiles A,B,C
and D in terms of relative positions of grain

features.
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MEDIANS ARITHMETIC MEANS

n=20" n=20" n=20"1 n=20"

Profile SIZE SHAPE SIZE SHAPE
% % % %
A 0 1 0 0
B 0 2 0 0
C 1 4 1 1
D 2 1 1 0

n, number of samples for each variety = 20

table 5 :Assessing performance of the two classifiers, ({SIZE} and

: {SHAPE} by the number of samples incorrectly assigned to
each variety expressed as a percentage of the total
number of samples used. Classifiers {SIZE} and {SHAPE}
used all descriptors, 1-31+ 67-69 inclusive and 32-6
inclusive respectively. B
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ARITHMETIC MEANS MEDIANS

Pillai Pillai

Wilks'’ trace Theta Wilks’ trace Theta

Classifier Profile At ? pie? o AL? p 1r? o
SIZE A 26.047 12.982 0.989 19.124 11.979 0.981
B 21.761 11.917 0.989 14.005 7.692 0.980
C 16.755 9.348 0.986 . 9.864 6.250 0.969
D 13.819 8.825 0.977 12.697 8.016 0.970
SHAPE A 23.306 11.919 0.985 13.998 8.645 0.974
B 19.904 11.245 0.988 12.300 7.029 0.973
c 15.514 9.211 0.981 8.467 4.964 0.970
D 12.056 8.145 0.968 10.461 7.811 0.957

1

) all with corresponding probabilities of p < 0.001

F-approximations to the multivariate statistics shown.

table 6 :Arithmetic means and medians: values of multivariate statistics A, v and 6 "describing"”
the arrangement of groups of samples of each variety within the feature space defined
by 34 and 35 descriptors within the two subgroups {SIZE} and {SHAPE} respectively.
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ARITHEMETIC MEANS

Profile {SIZE} {SHAPE}

A 1,2,3,4,5,7,8,9,10,11,12,13, 32,33,34,35,36,38,39,40, 41,
14,15,16,17,18,19,20,21,22, 42,43,44,45,47,50,52,53,55,
23,25,28,29,67,68 56,58,59,62,63, 64,65

B H~N~w~¢~m»m\q~m\pospw~wm~ww, 32,33,34,35,36,37,38,39,40,
14,15,16,17,18,19,20,21,22, 41,43,44,45,46,47,48,49,51,
23,25,26,27,28,31,67,68,69 52,53,54,55,56,57,58,61,62,

63, 64,65, 66

C 1,2,3,4,5,10,11,12,13,15,17, 32,33,34,36,41,43,47,50,55,
18,19,24,25,27,28,30,68,69 58

D 1,2,3,10,14,18,25,28,68 32,33,34,41,43,47,48,55,58,

61,64 .

table 7 :Arithmetic means: descriptors within each subgroup which fulfil
criteria of normality within varieties ( tested by Kolmogorov
Smirnov test, n =20 for each variety ) and homogeneity of variances )
across all five varieties ( Bartlett’s test, n=20 for each variety ) )

using arithmetic means as input wvariables.
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Profile

MEDIANS
{SIZE}

{SHAPE}

A

1,2,3,4,5,7,8,9,10,11,12,13,
14,15,16,17,18,19, 20, 21, 22,
23,25,28,29,67,68, 69

1,2,3,4,5,6,7,8,10,11,12,13,
14,15,16,17,18,19, 20,21, 22,
23,25,26,67,68,69

3,8,10,11,12,13,15,17,18,19,
21,22,25,27,28,67,68,69

1,2,3,6,8,10,13,18, 21,25, 26,
27,68

32,33,34,35,36,37,38,39, 41,
42,43,44,45,46,49,50,51,52,
53,55,58,59,61, 62,65

32,33,34,35,36,37,38,42,43,

44,46,47,48,49,50,51,52,53,
55,56,57,58,59,61,62,63, 64,
65,66

33,34,35,36,41,42,43,47,48,
50,57,58, 60

32,33,34,37,41,43,44,48,55,
56,60 .

table 8

:Medians: descriptors within each subgroup which fulfil

criteria of normality within wvarieties
Smirnov test, n =20 for each variety ) and homogeneity of

variances across all five varieties ( Bartlett’s test,
each variety ) using medians as input variables.

( tested by Kolmogorov

n=20 for




MEDIANS ARITHMETIC MEANS

n=20" n=20" n=20" n=20"

Profile SIZE SHAPE SIZE SHAPE
% % % %
A 3 5 0 0
B 0 9 0 0
c 5 1 1 8
D 14 2 14 6

n, number of samples for each variety = 20.

table 9 :Medians and arithmetic means: comparing the
performance of the two classifier models
{SIZE} and {SHAPE} when based upon input
variables meeting criteria of univariate
normality and homogeneity of wvariances.
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ARITHMETIC MEANS MEDIANS
Pillai Pillai
Wilks’ trace Theta Wilks’ trace Theta
Classifier Profile At vio? o' At? vt ? o'
SIZE A 23.280 12.697 0.983 20.478 11.804 0.975
B 20.497 11.297 0.989 16.042 9.109 0.976
C 27.718 13.305 0.980 15.635. 2.674 0.961
D 28.049 15.645 0.948 16.134 2.289 0.940
SHAPE A 17.106 11.256 0.962 14.892 10.035 0.954
B 17.134 9.893 0.981 13.112 7.894 0.968
C 21.934 12.516 0.935 13.925 9.043 0.911
D 17.436 11.655 0.881 18.872 13.972 0.907

1

2

all with corresponding @HOUNUMHWﬁMwm of p < 0.001

F-approximations to the multivariate statistics shown.

table 10

:Arithmetic means and medians:

values of multivariate statistics A, v and 6 "describing”
the arrangement of groups of samples of each variety within the feature space defined
by descriptors within the two subgroups {SIZE} and {SHAPE} respectively which meet the
two criteria of (i) univariate normality within varieties and (ii) homogeneity of

variance between five varieties.



ARITHMETIC MEANS MEDIANS

descriptor F-ratio' p2 descriptor F-ratio! p2

30 424,948 0.883 14 342.031 0.857
14 317.516 0.848 2 290.945 0.838

2 307.343 0.844 6 269.547 0.828
27 282.123 0.834 30 214.263 0.801

6 248 .371 0.819 69 199.965 0.793
69 225.775 -+ 0.807 1 174.115 0.7717

1 193.922 0.789 7 135.679 0.749
31 150.274 0.760 27 115.496 0.733
7 104.674 0.723 13 102.598 0.721
13 92.015 0.710 31 90.379 0.708
68 91.554 0.710 68 74.005 0.690
8 89.454 0.707 22 ~67.705 0.683
22 70.615 0.686 23 65.624 0.680
11 67.568 0.682 8 65.161 0.679
28 64.486 0.679 16 62.615 0.676
23 61.395 0.675 11 59.596 0.672
67 57.318 0.669 28 54.478 0.665
5 53.931 0.664 19 51.779 0.661
4 53.129 0.663 5 50.216 0.659
29 53.021 0.663 4 49,907 0.658
19 52,284 0.662 67 40.234 0.643
16 45,242 0.651 3 39.272 0.641

3 43.187 0.648 17 33.025 0.630
17 21.573 0.606 29 30.561 0.625
15 20.876 0.604 .15 22.250 0.607
20 18.620 0.598 24 16.679 0.593
25 17.613 0.593 20 15.856 0.591
21 14,236 0.586 25 14,983 0.588
12 10.452 0.574 21 11.958. 0.579
24 6.285 0.558 12 8.576 0.567
9 4,798 0.550 10 5.389 0.533
10 4.737 0.550 18 4,891 0.551
26 4,239 0.548 24 3.440 0.543
18 2.334 0.535 9 3.247 0.541

1

Univariate F-ratios for each descriptor (d.f.=4}145)
2

probabilities of correct identification using each descriptor
singly

table 11 :Arithmetic means and medians: descriptors from the
subgroup {SIZE} ordered by decreasing value of '

the univariate F-ratio based on 30 samples from each
of the five target varieties.
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ARITHMETIC MEANS MEDIANS

descriptor F-ratio® p2 descriptor ‘F-ratio® ;f
60 419.602 0.882 60 209.886 0.799
44 106.304 0.724 44 142.732 0.755
53 87.935 0.706 53 95.432 0.714
56 84.156 0.702 . 56 85.474 0.703
57 75.592 0.692 57 80.010 0.697
37 71.090 0.687 37 75.206 0.692
45 67.980 0.683 32 64.687 0.679
52 67.800 0.683 52 62.855 0.676
32 67.795 0.683 51 60.400 0.673
65 63.434 0.677 45 59.550 0.672
36 60.022 0.673 36 . 53.446 0.664
66 57.953 0.670 33 52.196 0.662
46 56.319 0.668 65 - 50.052 0.659
33 56.136 0.667 49 - 45.471 0.651
51 48.230 0.656 66 45.125 0.651
38 46.271 0.653 42 41.703 0.645
42 39.565 0.642 38 40.153 0.643
35 39.540 0.642 50 32.775 0.630
48 33.729 0.631 46 30.132 0.624
39 31.922 0.628 3 26.354 0.617
62 28.749 0.622. _ 62 26.266 0.616
61 25.309 0.614 39 21.607 0.606
59 23.371 0.610 63 18.029 0.597
34 21.187 0.605 34 17.859 0.596
55 16.193 0.592 48 16.886 0.594
63 14.813 0.588 61 16.865 0.594
47 14.371 0.587 54 15.680 0.590
58 14.199 0.586 47 14.209 0.586
50 11.256 0.578 64 13.857 0.585
41 10.784 0.575 59 13.771 0.585
49 8.462 0.567 58 12.745 0.582
43 5.377 0.553 55 10.885 0.576
40 5.184 0.552 41 7.223 0.562
54 4.411 0.548 43 4,314 0.548
64 3.106 0.541 40 2.940 0.539

1
Univariate F-ratios for each descriptor (d.f.=4,145)

”

probabilities of correct identification using each descriptor
singly '

table 12 :Arithmetic means and medians: descriptors from the
subgroup {SHAPE} ordered by decreasing value of

the univariate F-ratio based on 30 samples from each
of the five target varieties.
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model number descriptors included

v30

v2,v14,v30

v2,v6,v14,v27,v30

vi,v2,v6,v7,v14,v27,v30,v31,v69

vi,v2,v6,v7,v13,v14,v27,v30,v31,v68,v69

vi,v2,v6,v7,v8,v13,v14,v27,v30,v31,v68,v69

vi,v2,v6,v7,v8,v13,v14,v22,v27,v30,v31l,v68,v69

vi,v2,v6,v7,v8,v11l,v13,v14,v22,v23,v27,v28,v30,

v3l,v68,v69

vi,v2,v4,v5,v6,v7,v8,v1l,v13,v14,v19,v22,v23,v27,

v28,v29,v30,v31,v67,v68,v69

10 vi,v2,v3,v4,v5,v6,v7,v8,v1l,v13,v14,v1l6,v19,v22,v23,
v27,v28,v29,v30,v31,v67,v68,v69

11 , vli,v2,v3,v4,v5,v6,v7,v8,v11,v13,v14,v15,v16,v17,v19,
v22,v23,v27,v28,v29,v30,v31,v67,v68,v69

12 vli,v2,v3,v4,v5,v6,v7,v8,v12,v1l,v13,v14,v15,v16,v17,
v1l9,v20,v21,v22,v23,v25,v27,v28,v29,v30,v31,v67,ve6s8,

v69

OO W

O

table 13 :Arithmetic means: descriptors from the subgroup {SIZE}
used as input variables for canonical discriminant
analysis in each of the models indicated.
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model number descriptors included

v60

vd4,v60

v44,v53,v56,v60

v37,v44,v53,v56,v57,v60

v32,v36,v37,v44,v45,v53,v56,v57,v60,v6e5

v32,v33,v36,v37,v44,v45,v46,v52,v53,v56,v57,

v60,v65,v66

v32,v33,v36,v37,v38,v44,v45,v46,v51,v52,v53,v56,

v57,v60,v65,v66

8 v32,v33,v35,v36,v37,v38,v39,v42,v44,v45,v46,v48,
v51,v52,v53,v56,v57,ve60,v65,v66

9 v32,v33,v34,v35,v36,v37,v38,v39,v42,v44,v45,v46,
v48,v51,v52,v53,v56,v57,v59,v60,v6l,v62,v65,v66

10 v32,v33,v34,v35,v36,v37,v38,v39,v4l,v42,v44,v45,

v46,v47,v48,v50,v51,v52,v53,v56,v57,v58,v59,v60,

v6l,v62,v65,v66

AU WN

~3

table 14 :Arithmetic means: descriptors from the subgroup {SHAPE}

used as input variables for canonical discriminant
analysis in each of the models indicated.
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model number descriptors included

vli4

v2,v6,v14,v30

vl,v2,v6,v7,v13,v14,v27,v30,v69

vl,v2,v6,v7,v13,v14,v27,v30,v31l,v69

vi,v2,v6,v7,v8,v13,v14,v27,v30,v31l,v69

vl,v2,v6,v7,v8,v13,v14,v27,v30,v31,v68,v69

vli,v2,v6,v7,v8,v13,v14,v16,v22,v23,v27,v30,v3L,

v68,v69

vl,v2,v5,v6,v7,v8,v1l,v13,v14,vl6,v19,v22,v23,v27,

v28,v30,v31l,v68,v69

9 vi,v2,v4,v5,v6,v7,v8,v11l,v13,v1i4,v16,v19,v22,v23,
v27 v28 v30 v31l, v67 v68 V69

10 vl, v2 v3,v4,v5 v6 V7 v8,v1ll,v13,vl4, v16 vl7,v19,v22,
v23, v27,v28 v29,v30, v31 v67,v68,v69

11 vl,v2,v3,v4,v5,V6,v7,V8,vll,v13,v14,v15,v16,v17,v19,
v22,v23,v27,v28,v29,v30,v31l,v67,v68,v69

12 vi,v2,v3,v4,v5,v6,v7,v8,v11,v13,v14,v15,v16,v17,v19,

v20,v21,v22,v23,v24,v25,v27,v28,v29,v30,v31,v67,ve68,

v69

o W

@

table 15 :Medians: descriptors from the subgroup {SIZE} used as
input variables for canonical discriminant analysis in
each of the models indicated.
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model number descriptors included

v60

vd4,v60

v44,v53,v60

v44,v53,v56,v57,v60

v37,v44,v53,v56,v57,v60

v32,v37,v44,v51,v52,v53,v56,v57,v60

v32,v33,v36,v37,v44,v45,v51,v52,v53,v56,

v57,v60,v65,

v32,v33,v36,v37,v38,v42,v44,v45,v49,v51,

v52,v53,v56,v57,v60,v65,v66

9 v32,v33,v36,v37,v38,v42,v44,v45,v46,v49,
v50,v51,v52,v53,v56,v57,v60,v65,v6e6

10 v32,v33,v34,v35,v36,v37,v38,v39,v42,v44,v45,
v46,v49,v50,v51,v52,v53,v56,v57,v60,v62,v65,
v66

11 v32,v33,v34,v35,v36,v37,v38,v39,v42,v44,v45,

vd6,v47,v48,v49,v50,v51,v52,v53,v54,v55,v56,

v57,v58,v59,v60,v6l,v62,v63,v64,v65,v66

~NSogrdbd W

[0 ¢]

table 16 :Medians: descriptors from the subgroup {SHAPE}

used as input variables for canonical discriminant
analysis in each of the models indicated.
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ARITHMETIC MEANS MEDIANS

{SIZE} {SIZE}
model Pillai ’ model Pillai
reference Wilks’ trace Theta reference Wilks’ trace Theta
number A v 2] : number A v 2]
H* -— - - H* - - -

2 0.011 1.906 0.933 2 0.008 2.163 0.937
3 0.003 2.393 0.963 3 0.002 2.691 0.968
4 0.001 2.915 0.967 4 0.001 2.934 0.969
5 0.000 3.040 0.970 5 0.001 3.018 0.972
6 0.000 3.117 0.972 6 - 0.000 3.079 0.973
7 0.000 3.148 0.973 7 0.000 3.143 0.978
8 0.000 3.223 0.978 8 0.000 3.214 0.979
9 0.000 3.325 0.980 S . 0.000 3.243 0.980
10 0.000 3.331 0.981 10 0.000 3.295 0.980
11 0.000 3.367 0.982 11 0.000 3.324 0.980
12 0.000 3.419 0.983 12 0.000 3.382 0.981

1* model 1, only a single descriptor used, hence no calculation of multivariate statistics.

table 17 :Multivariate test statistics for models 1-12, using serial combinations of descriptors
from the descriptor subgroup {SIZE}. Values shown for both arithmetic mean and

medians.
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ARITHMETIC MEANS

MEDIANS

{SHAPE} {SHAPE}

model ‘Pillai model Pillai
reference Wilks’ trace Theta reference Wilks’ trace Theta
number A v e number A v 2]

H.» - - - .._..» - - -

2 0.027 1.552 0.930 2 0.038 1.561 0.879
3 0.014 1.847 0.941 3 0.025 1.795 0.901
4 0.006 2.340 0.953 4 0.013 1.960 0.935
5 0.002 2.689 0.956 5 0.006 2.357 0.946
6 0.001 2.877 0.958 6 0.003 2.675 0.948
7 0.001 3.025 0.958 7 0.002 2.849 0.954
8 0.000 3.159 0.968 8 0.001 2.946 0.959
9 0.000 3.240 0.971 °] 0.001 2.957 0.961
10 0.000 3.339 0.983 10 0.001 3.050 0.963
- - - - 11 0.000 3.146 0.966

1* model 1,

table 18

only a single descriptor used, hence no calculation

:Multivariate test statistics for models 1-12,
from the descriptor subgroup {SHAPE}. Values shown for both arithmetic mean and

medians.

of multivariate statistics.

using serial combinations of descriptors



model ARITHMETIC MEANS MEDIANS

reference " %error $error
number (n=30) ! (n=30)1
1 42.0 50.0
2 20.7 18.0
3 12.0 6.7
4 2.7 3.3
5 1.3 4.0
) 1.3 2.7
7 0.7 1.3
8 0.7 0.7
9 0.7 1.3
10 0.7 0.0
11 0.0 0.0
12 0.0 0.7

30 samples of each variety.

table 19 tArithmetic means and medians: comparing the
performance of serial combinations of descriptors
from the subgroup {SIZE} in terms of their ability
to self-classify samples of each variety correctly.
Model reference numbers refer to those combinations
of descriptors given in tables 13 and 15
for arithmetic means and medians respectively.
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model ARITHMETIC MEANS MEDIANS

reference $error $error
number (n=30)1 (n=30)l
1 40.7 40.7
2 23.3 22.7
3 18.0 22.0
4 9.3 18.0
5 6.7 8.0
6 4.0 2.7
7 3.3 4.0
8 2.0 3.3
) 1.3 4.0
10 1.3 3.3
11 - 2.7

1
30 samples of each variety.

table 20 :Arithmetic means and medians: comparing the
performance of serial combinations of descriptors
from the subgroup ({SHAPE} in terms of their ability
to self-classify samples of each variety correctly.
Model reference numbers refer to those combinations
of descriptors given in tables 14 and 16
for arithmetic means and medians respectively.
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allocation of %$error amongst varieties

wo~JoaudwWwN P

no. (as % no.cases in error)
model cases' %error hcn igr kin mot pda
63 42.0 39.7 0.0 19.0 31.7 9.5
31 20.7 45.2 0.0 32.3 22.5 0.0
18 12.0 50.0 0.0 5.6 44 .4 0.0
4 2.7 100.0 0.0 0.0 0.0 0.0
2 1.3 100.0 0.0 0.0 0.0 0.0
2 1.3 100.0 0.0 0.0 0.0 0.0
1 0.7 100.0 0.0 0.0 0.0 0.0
1 0.7 100.0 0.0 0.0 0.0 0.0
1 0.7 100.0 0.0 0.0 0.0 0.0
10 1 0.7 100.0 0.0 0.0 0.0 0.0
11 0 0.0 0.0 0.0 0.0 0.0 0.0
12 0 0.0 0.0 0.0 0.0 0.0 0.0
1
total number of cases in which variety incorrectly

self~classified.

table 21

tArithmetic means: showing the number of cases of each
~variety which were incorrectly self-classified using

each serial combination of descriptors from the
{SIZE} subgroup. Number of cases incorrectly
assigned in each variety expressed as a percentage of
the total number of incorrect assignations.
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allocation of %error amongst varieties

WoOo~-JoaUdwhE

no. (as % no.cases in error)

model cases' S$error hen igr kin mot pda
75 50.0 17.3 13.3 36.0 17.3 16.0
27 18.0 33.3 3.7 11.1 51.9 0.0
10 6.7 50.0 - 0.0 10.0 40.0 0.0
5 3.3 60.0 0.0 0.0 60.0 0.0
6 4.0 50.0 0.0 0.0 50.0 0.0
4 2.7 50.0 0.0 0.0 50.0 0.0
2 1.3 100.0 0.0 0.0 0.0 0.0
1 0.7 100.0 0.0 0.0 0.0 . 0.0
2 1.3 50.0 0.0 0.0 50.0 0.0

10 0 0.0 0.0 0.0 0.0 0.0 0.0

11 0 0.0 0.0 0.0 0.0 0.0 0.0

12 1 0.7 100.0 0.0 0.0 0.0 0.0

1

total number of cases in which variety incorrectly

self~-classified.

table 22 :Medians: showing the number of cases of each variety
which were incorrectly self-classified wusing each
serial combination of descriptors from the {SIZE}
subgroup. Number of cases incorrectly assigned in each

variety expressed as a percentage of the total number of
incorrect assignations.
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allocation of %$error amongst varieties

no. (as % no.cases in error)

model cases' %error hcn igr kin mot pda
1 61 40.7 37.7 0.0 9.8 32.8 19.7
2 35 23.3 31.4 0.0 20.0 42.9 5.7
3 27 18.0 33.3 0.0 22.2 40.7 3.7
4 14 9.3 57.1 0.0 7.1 35.7 0.0
5 10 6.7 80.0 0.0 0.0 20.0 0.0
6 6 4.0 83.3 0.0 0.0 16.7 0.0
7 5 3.3 80.0 0.0 0.0 20.0 0.0
8 3 2.0 66.7 0.0 0.0 33.3 0.0
9 2 1.3 100.0 0.0 0.0 0.0 0.0
10 2 1.3 100.0 0.0 0.0 0.0 0.0
1 . .
total number of cases in which variety incorrectly

self-classified.

table 23 :Arithmetic means: showing the number of cases of each
variety which were incorrectly self-classified using
each serial combination of descriptors from the
{SHAPE} subgroup. Number of cases incorrectly
assigned for each variety expressed as a percentage
of the total number of incorrect assignations.
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allocation of %error amongst varieties

no. (as % no.cases in error)
model cases' %error hen igr ‘kin mot pda
1 61 40.7 32.8 1.6 11.5 29.5 24.6
2 35 23.3 25.7 2.9 22.8 40.0 8.6
3 32 21.3 28.1 0.0 34.3 31.2 6.5
4 27 18.0 33.3 0.0 33.3 33.3 0.0
5 12 8.0 50.0 0.0 16.7 33.3 0.0
6 4 2.7 100.0 0.0 0.0 0.0 0.0
7 6 4.0 100.0 0.0 0.0 0.0 .0.0
8 5 3.3 100.0 0.0 0.0 0.0 0.0
9 6 4.0 83.3 0.0 0.0 16.7 0.0
10 5 3.3 100.0 0.0 0.0 0.0 0.0
11 4 2.7 75.0 0.0 0.0 25.0 0.0
1

total number of cases in which variety incorrectly

self-classified.

table 24 :Medians: showing the number of cases of each variety
which were incorrectly self-classified using each
serial combination of descriptors from the {SHAPE}
subgroup. Number of cases incorrectly assigned

for each variety expressed as a percentage of the total
number of incorrect assignations.
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correctly classified as variety: correctly identified as variety:

training test SIZE SHAPE

set N' set n? hcn igr kin mot pda $error’ hcn igr kin mot pda $error’
68 150 oo 75 15 15 14 15 15 1.3 14 15 15 13 15 4.0
- 150 X6 75 15 15 15 11 - 15 5.3 15 15 15 11 15 5.3
68480 175 Yo, 50 10 10 10 9 10 2.0 10 10 9 9 10 4.0
66490 175 Yo, 50 10 10 10 S 10 2.0 10 10 10 9 10 2.0
2 SN 225 X 75 15 15 12 13 15 6.7 15 15 12 12 15 8.0

N= total number of samples within training set.

“n= total number of samples within test set.
w N

Serror= number of misclassified test samples as % total number of test samples.

table 25 :Arithmetic means: classification of "unknown" varieties in test
sets using samples from training sets shown to establish location
of groups of variety samples in discriminant space. Training and
test set codes are those given in table 2.
Figures given in the table show the number of samples of each
variety correctly identified for {SIZE} and {SHAPE} descriptor

subgroups.
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correctly classified as variety: correctly identified as variety:

training test SIZE SHAPE

set N' set hm hen igr kin mot pda $error’ hen igr kin mot pda $error’
Omm 150 xmw 75 14 15 14 14 15 4.0 11 15 14 11 15 12.0
Cos 150 X0 75 13 15 15 11 15 8.0 12 15 15 11 15 9.1
Cocrao 175 Y., 50 10 10 9 10 10 2.0 10 10 9 8 10 6.0
Cosroo 175 Yo, 50 10 10 10 8 10 4.0 10 10 10 8 10 4.0
Coot¥ss 225 X 75 15 15 12 13 15 6.7 15 15 15 13 15 2.6

'N= total number of samples within training set.

n= total number of samples within test set.

*3error=number of samples misclassified as % of total number of samples in test set.

table 26 :medians: classification of "unknown" varieties in test
sets using samples from training sets shown to establish location
of groups of variety samples in discriminant space. Training and
test set codes are those given in table 2.
Figures given in the table show the number of samples of each
variety correctly identified for {SIZE} and {SHAPE} descriptor

subgroups.
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correctly classified as variety:

training SIZE SHAPE

set Nt n? hcn igr kin mot pda $error’ hecn igr kin mot pda $error’
Cos 150 30 30 30 30 30 30 0.0 29 30 30 30 30 0.7
Cossino 175 35 35 35 35 35 35 0.0 34 35 35 35 35 0.6
Cosioo 175 35 35 35 35 35 35 0.0 34 35 34 35 35 1.1
Omw+xmo 225 45 45 45 44 45 45 0.4 43 45 44 45 45 1.3

'N= total number of samples within training set.

n= number of samples for each variety.

% error=total number of samples assigned incorrectly as % of total number of samples.

table 27 :Arithmetic means: self-classification of varieties in training
sets using samples from one year only (Css) or from two different
years. Css+s9 comprises 30 samples of each variety from 1988
harvested stocks plus 5 samples of each variety from 1989 harvested
stocks; similarly, Css+9o comprises samples from 1988 and 1990
in the same relative proportions. Css+Xss combines all available
samples from 1988 and 1989 into one training set. Figures given
in the table show the number of samples correctly self-classified
within each training series for {SIZE} and {SHAPE} descriptor

subgroups.
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correctly classified as variety:

training ) SIZE SHAPE

set N* n? hcn igr kin mot pda $error’® hen igr kin mot pda $error
Ces 150 30 29 30 30 30 30 0.7 28 30 30 29 30 2.0
Cocrno 175 35 35 35 35 35 35 0.0 31 35 35 33 35 3.4
Caoroo 175 35 34 35 35 35 35 0.6 32 35 35 34 35 2.3
CootXy, 225 45 45 45 44 45 45 0.4 41 Au 45 45 45 1.8

!N= total number of samples within training set.

’h= number of samples for each variety.

3

table 28

$error=number of samples incorrectly assigned as % of total number of samples.

:medians: self-classification of varieties in training

sets using samples from one year only (Css) or from two different
years. Css+g8o comprises 30 samples of each variety from 1988
harvested stocks plus 5 samples of each variety from 1989 harvested
stocks; similarly, Css+so comprises samples from 1988 and 1990

in the same relative proportions. Css+Xses combines all available
samples from 1988 and 1989 into one training set. Figures given

in the table show the number of samples correctly self-classified
within each training series for {SIZE} and {SHAPE} descriptor

subgroups.




model ARITHMETIC MEANS MEDIANS

reference %error %error
number (n=15) " (n=15)"

1989 1990 1989 1990

% % % %

1 41.3 37.3 74.7 62.7
2 19.3 46.7 41.3 48.0
3 33.3 42.7 16.0 29.3
4 10.7 25.3 13.3 26.7
5 5.3 10.7 14.7 21.3
6 4.0 10.7 10.7 21.3
7 4.0 16.0 10.7 18.7
8 6.7 12.0 8.0 10.7
9 6.7 10.7 10.7 13.3
10 8.0 8.0 12.0 10.7
11 5.3 10.7 6.7 10.7
12 4.0 4.0 6.7 8.0

1
15 samples of each variety.

table 29 :Arithmetic means and medians: comparing the
performance of serial combinations of descriptors
from the subgroup {SIZE} in terms of their ability
to classify 15 "unknown" samples of each variety

taken from 1989 and 1990 harvested stocks. (Sample
series Xss and X¢o respectively.)

Classification "rules" developed from 30

samples of each variety drawn from 1988 harvested
stocks in samples series Css.

Model reference numbers refer to those combinations
of descriptors given in tables 13 and 15

for arithmetic means and medians respectively.
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model ARITHMETIC MEANS MEDIANS

reference $error $error
number (n=15) " (n=15)"

1989 1990 1989 1990

% % % %

1 46 .7 38.7 38.7 36.0
2 26.7 38.7 32.0 38.7
3 28.0 40.0 ~25.3 44.0
4 16.0 45,3 26.7 52.0
5 24.0 33.3 20.0 42 .7
6 25.3 33.3 . 20.0 18.7
7 20.0 18.7 20.0 17.3
8 16.0 17.3 16.0 14.7
9 6.7 8.0 16.0 16.0
10 6.7 6.7 14.7 14.7
11 - - 13.3 8.0

1
15 samples of each variety.

table 30 :Arithmetic means and medians: comparing the
performance of serial combinations of descriptors
from the subgroup {SHAPE} in terms of their ability
to classify 15 "unknown" samples of each variety
~taken from 1989 and 1990 harvested stocks. (Sample
series Xss and Xgo respectively.)
Classification "rules" developed from 30
samples of each variety drawn from 1988 harvested
stocks in samples series Css.
Model reference numbers refer to those combinations
of descriptors given in tables 14 and 16
for arithmetic means and medians respectively.
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1989 samples:arithmetic means 1990 samples: arithmetic means
%contribution of wvariety $contribution of variety
no. error to total error. no. error to total error.
! * igr’® * mot’ @Qmw cases' $error’ hcn’ w@nw kin® mot’ vamw

2 .
model cases ™ %$error hen igr kin

1 31 41.3 41.9 6.5 3.2 29.0 19.4 28 37.3 46.4 7.1 7.1 28.6 10.7
2 29 19.3 51.7 6.9 17.2 24.1 0.0 35 46.7 42.9 5.6 42.9 0.0 8.6
3 25 33.3 48.0 8.0 16.0 28.0 0.0 32 42.7 46.9 6.2 46.9 0.0 0.0
4 8 10.7 12.5 25.0 12.5 50.0 0.0 19 25.3 68.4 10.0 10.5 21.1 0.0
5 4 5.3 -50.0 25.0 25.0 0.0 0.0 8 10.7 50.0 0.0 12.5 37.5 0.0
6 3 4.0 66.7 0.0 33.3 0.0 0.0 8 10.7 50.0 0.0 12.5 37.5 0.0
7 3 4.0 66.7 0.0 33.3 0.0 0.0 12 16.0 41.7 0.0 8.3 50.0 0.0
8 5 6.7 60.0 0.0 20.0 20.0 0.0 S 12.0 44 .4 0.0 0.0 55.6 0.0
9 5 6.7 80.0 0.0 0.0 20.0 0.0 8 10.7 50.0 0.0 0.0 50.0 0.0
10 6 8.0 . 66.7 0.0 16.7 16.7 0.0 6 8.0 50.0 0.0 0.0 50.0 0.0
11 4 5.3 75.0 0.0 25.0 0.0 0.0 8 10.7 50.0 0.0 0.0 50.0 0.0
12 3 4.0 66.7 0.0 33.3 0.0 0.0 3 4.0 33.3 0.0 0.0 66.7 0.0

1
total number of cases in which variety incorrectly classified.

NmeHOH"A total number of cases incorrectly classified / total number of cases ) * 100.
*number of cases of each variety incorrectly classified / total number of cases incorrectly classified )

table 31 t:Arithmetic means: showing the number of cases of each variety which were incorrectly
classified using each serial combination of descriptors from the {SIZE} subgroup.
Classification "rules" based on 30 samples of each variety drawn from 1988 stocks
in sample series Css.
15 samples from each variety drawn from 1989 and 1990 stocks (sample series Xss and X90
respectively) not included in the establishment of classification "rules".

Model numbers refer to those given in table 13.
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1989 samples: arithmetic means 1990 samples: arithmetic means
%contribution of variety $contribution of variety

PO Wi

no. error to total error. no. error to total error.
model cases' $error’ hen’ woﬂw kin® mot’ @amw cases’ $error’ hen’ MQHu xin® mot?® ﬁamu
35 46.7 37.1 5.7 2.9 31.4 22.9 29 38.7 48.3 6.9 3.4 31.0 10.3
20 26.7 35.0 10.0 0.0 55.0 0.0 29 38.7 51.7 6.9 3.4 31.0 6.9
21 28.0 47.6 4.8 4.8 42.8 0.0 30 40.0 50.0 3.3 0.0 43.3 3.3
12 16.0 8.3 8.3 8.3 75.0 0.0 34 45.3 41.2 0.0 32.4 26.5 0.0
18 24.0 38.9 5.6 11.1 44.4 0.0 25 33.3 60.0 0.0 4.0 36.0 0.0
19 25.3 52.6 0.0 5.3 42.1 0.0 25 33.3 56.0 0.0 0.0 44.0 0.0
15 20.0 13.3 6.7 6.7 73.3 0.0 14 18.7 28.6 0.0 7.1 64.3 0.0
12 16.0 16.7 8.3 8.3 66.7 0.0 13 17.3 30.7 0.0 7.7 61.5 0.0
5 6.7 40.0 0.0 20.0 40.0 0.0 6 8.0 16.7 0.0 16.7 66.6 0.0
0 5 6.7 40.0 0.0 20.0 40.0 0.0 5 6.7 0.0 0.0 20.0 80.0 0.0
1
total number of cases in which variety incorrectly classified.

’gerror: ( total number of cases incorrectly classified / total number of cases ) * 100.

*number of cases of each <mnwmﬁw incorrectly classified / total number of cases incorrectly classified )

table 32 tArithmetic means: showing the number of cases of each variety which were incorrectly
classified using each serial combination of descriptors from the {SHAPE} subgroup.
Classification "rules" based on 30 samples of each variety drawn from 1988 stocks

« . in sample series Css.
15 samples from each <mnwmﬁ< drawn .from 1989 and 1990 stocks (sample series Xss and Xoso
respectively) not included in the establishment of classification =chmm=

Model numbers refer to those given in table 15.
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1989 samples: medians 1990 samples: medians

$contribution of variety $contribution of variety
no. error to total error. no. error to total error.
model cases®' $error’ hen’® MQHw kin® mot? @Qmw cases' $error®’ hen’ MQHu kin® mot? vumw
1 56 74.7 21.4 14.3 26.8 25.0 12.5 47 62.7 23.4 8.3 27.7 21.3 23.4
2 31 41.3 29.0 9.7 16.1 45.2 0.0 36 48.0 41.7 5.6 33.3 11.1 8.3
3 12 16.0 33.3 25.0 8.3 33.3 0.0 22 29.3 59.1 9.1 0.0 31.8 0.0
4 10 13.3 40.0 30.0 10.0 20.0 0.0 20 26.7 65.0 10.0 0.0 23.0 0.0
5 11 14.7 45.5 27.3 9.1 18.2 0.0 16 21.3 75.0 6.3 0.0 18.7 0.0
6 8 10.7 62.5 0.0 12.5 25.0 0.0 16 21.3 75.0 0.0 0.0 25.0 0.0
7 8 10.7 50.0 0.0 12.5 37.5 0.0 14 18.7 64.3 0.0 0.0 35.7 0.0
8 6 8.0 83.3 0.0 16.7 0.0 0.0 8 10.7 62.5 0.0 0.0 37.5 0.0
9 8 10.7 87.5 0.0 0.0 12.5 0.0 10 13.3 60.0 0.0 0.0 40.0 0.0
10 9 12.0 88.9 0.0 11.1 0.0 0.0 8 10.7 50.0 0.0 0.0 50.0 0.0
11 5 6.7 80.0 0.0 20.0 0.0 0.0 8 10.7 50.0 0.0 0.0 50.0 0.0
12 5 6.7 60.0 0.0 20.0 20.0 0.0 6 8.0 33.3 0.0 0.0 66.7 0.0

total number of cases in which variety incorrectly classified.
mmeHOH"A total number of cases incorrectly classified / total number of cases ) * 100.
’number of cases of each variety incorrectly classified / total number of cases incorrectly classified )

table 33 : medians: showing the number of cases of each variety which were incorrectly
classified using each serial combination of descriptors from the {SIZE} subgroup.
Classification "rules" based on 30 samples of each variety drawn from 1988 stocks
in sample series Css.
15 samples from each variety drawn from 1989 and 1990 stocks (sample series Xss and Xoo
respectively) not included in the establishment of classification "rules”.

Model numbers refer to those given in table 14.
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1989 samples: medians 1990 samples: medians

$contribution of variety $contribution of variety
no. error to total error. no. error to total error.
model cases' $error’ hen’ wmnw kin® mot’ vamw cases’ $error’ hen’ MaHu kin® mot? vamu
1 29 38.7 51.7 10.3 6.9 10.3 20.7 27 36.0 55.6 7.4 18.5 18.5 0.0
2 24 32.0 16.7 12.5 20.8 50.0 0.0 29 38.7 51.7 6.9 6.9 34.5 0.0
3 17 25.3 23.5 11.8 0.0 64.7 0.0 30 44.0 50.0 6.7 6.7 36.6 0.0
4 20 26.7 25.0 10.0 10.0 55.0 0.0 39 52.0 38.5 5.1 12.8 33.3 10.3
5 15 20.0 13.3 20.0 6.7 60.0 0.0 32 42.0 34.4 0.0 28.1 37.5 0.0
6 15 20.0 20.0 20.0 0.0 60.0 0.0 14 18.7 28.6 14.3 0.0 57.1 0.0
7 15 20.0 20.0 13.3 6.7 60.0 0.0 13 17.3 23.1 0.0 0.0 76.9 0.0
8 12 16.0 33.3 0.0 8.3 58.3 0.0 11 14.7 27.3 0.0 0.0 72.7 0.0
9 12 16.0 25.0 8.3 8.3 58.3 0.0 12 16.0 33.3 0.0 0.0 66.7 0.0
10 11 14.7 36.4 0.0 9.1 54.5 0.0 11 14.7 36.4 0.0 0.0 63.6 0.0
11 10 13.3 40.0 0.0 10.0 50.0 0.0 6 8.0 50.0 0.0 0.0 50.0 0.0

1
total number of cases in which variety incorrectly classified.

*error: ( total number of cases incorrectly classified / total number of cases ) * 100.
*humber of cases of each variety incorrectly classified / total number of cases incorrectly classified )

table 34 :medians: showing the number of cases of each variety which were incorrectly
classified using each serial combination of descriptors from the {SHAPE} subgroup.
Classification "rules" based on 30 samples of each variety drawn from 1988 stocks
in sample series Css.
15 samples from each variety drawn from 1989 and 1990 stocks (sample series Xss and Xso
respectively) not included in the establishment of classification "rules".

Model numbers refer to those given in table 16.
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